STRESS STATE OF AN ECCENTRIC TUBE UNDER ELASTIC—PLASTIC
STRAIN SUBJECTED TO PRESSURE
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The elastic—plastic state of an eccentric tube under the effect of internal pressure
was examined in [1]. The solution was by the method of perturbations under the condition
that the plastic zone completely encloses the internal contour. In this paper a modified
perturbation method is proposed that will permit investigation of the stress state and the
development of the plastic zone with only part of the contour enclosed. A problem on the
elastic—plastic torsion of eccentric tubes [2] is solved by the method mentioned.

Let us consider the cross section of an eccentric tube (Fig. 1) from an ideal elastic~—
plastic material loaded by internal pressure. The equations of the inner and outer contours
of the eccentric tube cross section have the form

L, :

r=ry,
(L
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where all the linear dimensions are referred to r,.

In the absence of a plastic zone the internal pressure causes stress which is determined
by the method of perturbations [3] with terms in & not above §* taken into account:

-2

! ks " -
Org = Ay * - 205 -4 6(2b,r — 2ap7%) %

. Q&2 -2 ‘ . 3 f et
X €038 + 82 (q,r 2w 20— (2a, + Bagr™t — by

) cos 20), (2)
- 6(Bbyr -+ 2ar) cos 0 - 8 (— agr - 2ep 4 (20, 12b,r% 1 GayrT?) cos 26),

R N ! 3 . a fe LN N a2 s
Trgp == O (_’.blr — 241 ).’\'ln 0 - & (.;a_, »»»»» Bar Tt - Byt - 2har ’) win 20,

where . .
pri Py ar
@y = — v U S
0 - 0 21 T
o , L3 , I
T
t i— r’f’ e rt{ 0 2 (1 - r'\ ’
ty = A D (26 (7 1) 2 (5 2):
<
L, /7
/
’
[
\ Fig. 1
\ 1y < g
\
. 9
-

Kuibyshev, Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No.
Original article submitted May 7,

pp. 152-159, May-June, 1983.

0021-8944/83/2403- 0429%07.50

© 1984 Plenum Publishing Corporation

1982.



’ i w1 /. PR a 1 -
@y = = D726 (1 — r}) — M (372 — 15— 2)); ba::%rl)l(G(r{V~

A B e M (T ) by e 1 DG (— 7t —
T Y ba a {3ri11
— M ("' _)J‘l ' - Ty 2 -~ ]i)) L = a 4; M == — --————--—-.—-n{ L : ) ;
[t f—rd
a, (5-1- 379 .
G '"‘”’"E'*;rl'-; 3 I Y Y P RN S
] .

The case is examined when the Poisson coefficient is y = '/, and the Tresk and Mises
plasticity conditions agree

2

(00 — 0,)* 4 Aty = 4K 3

(K is the shear yield point).

The case is investigated when the left side of (3) is maximal at the point A [4] and
plastic flow starts from the point A when p = po. The value of po is determined from (3) for
8=0and r = ;.

For p > po the plastic zone will extend from the point A and will occupy a domain sym-
metric with respect to the x axis with an angle enclosing the inner contour 264. Henceforth,
the angle enclosing the inner contour of the plastic zone is understood to be 8.

"The equation for the elastic—plastic boundary Lg is written in the form

ry =, -+ plp, 0),

(4)
where p(p, 6) is the plastic zone thickness.
Let us introduce the smaller parameter

&% = (p — Po}/Po- (5)

The small parameter € from (5) is related to the angle enclosing the plastic zone 9x
of the contour L; by the relatiomship

€~ By, 5in0,~e, cosh, ~ 1.

(6)
We represent the stress in the elastic domain in the form
Oy = 2 Ul‘isi,: Og == 2 Guzei, Trg == 2 Treiﬁil 7)
=0 i=0 0
According teo [1] the stresses in the plastic domain have the form
ﬁ:~p+mm%a%:wp+wp+m%) (8)
1 1
We seek the function p from (4) in the form of a series expansion in e:
o0
o =2 pie’. 9

The stresses in the elastic domain are expressed in terms of the function ¢ satisfying
the biharmonic equation
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where % is sought in the form ¢ = ) ;&%
=0
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It follows from (10)
(11D

A, = 0,i=0,1,2 ...

The stresses in each approximation have the form
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The boundary conditions on the contour L; are determined in the elastic domain from the condi-

tion of loading by internal pressure p with (5) and (7) taken into account

E O'riai = — pp(l ¢ )1 24 Tr@igi = 0. (12)
=0 =0

we obtain boundary

Equating terms with identical powers of ¢ in each of the equations in (12)

conditions for the different approximation on the contour L,
= 0,0 =3, 4, ...
Ty 3 , (13)
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The boundary conditions on the contour L. are

o
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D oopetcos(my, )b N et cos (1, 8) == 0,

1:0 Lj‘ (14)
D asel cos (.. 0) L ) Tt cos (ry, 1) = O,

-0 i=0

(nz, ©) are angles between the normal to L, and the axes of a polar coordinate

where (na2, 1),
system. The expressions for cos(n., r) and cos(n,, 8) are

. @, N _lme
cos (ny, r) = qu) ( *—f cos 72y, 0) }/qﬁ = G-JQ(O

where @ ==r—1 -+ 8cos 0 -~ (8%2)3in® 0 - is the equation of the outer contour of L,. Sub-
e and manlpulating, we obtain .

stituting &,4, ¢
Fouey, 008 (ny, 0) = ~-85in0 I (15)

€os (ry, r) = 1 — 8 5in?§/2
Equating terms with identical powers of e in (14), we obtain boundary conditions on the com-

tour L, for different approximations
(16)

Tpg; CO5 (Ry, 0) = 0,

. 1
Gy, 08 (ny, 1)
LEe= 0,102, 0.

0g; €08 (g, B) - 1
The boundary conditions for the elastic domain on the elastlc-—plastlc boundary are de-

termined from the condition of equal stresses:

(17)

» n e,
Oy = O, O = 0p, Tpg == 0

Using (4), (7), and (8), we expand (17) in a power series in p with respect to the con-
tour L, but limiting ourselves to terms with powers not above ¢
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and furthermore, expanding the sum
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Upon expanding the sum in (20) we obtain an equality analogous to (19) with the difference
that the right side equals zero. There follows from a comparison of the terms in (19)

9 1 /
2Ky -«k(‘Bn»'ﬂ ———-+ 8D, sin20 4, (22)
where By, = 2b, + 6air: * Dy = 24alry® + 8bjr;>. After expanding sin®(9/2) and sin®6 in
series and retaining terms with & not above 6% we obtain

((1/ )63,‘1 T 26D |)62 (23)

Taking account of (23) and (6) and equating terms for €.in (19), weobtain the boundary con~
(24)

ditions for dy; om Ly
1 = 0

From (21) with (6) taken into account we obtain the boundary condition on L, for t,g; after
(25)

equating terms in €
Troy == 0.
(26)

Taking account of (24) and (25), we have from the boundary conditions (13), (16), (17)
¢ =0, p, = 0.

Taking account of (26), we obtain the problem to determine the second approximation stresses
A2(P2; Grp == ~—Pos Trgz = 0 on Ll;
G, €0S (g, T) -1 Tr05 COS (ny, 8) = 0, (27)
Ogy €08 (11y, 0) -+ T,g5 COS (Ry, 1) = Qon L,

from (18) and (21):

The boundary-value problem (27) agrees with the problem of elastic loading on an eccen—
Keeping terms with 6 not above 63, it

tric ring by internal pressure whose solution is (2).
can be shown that
(—ps + 2K — 0qy ) == L;0 (28)
1 -
where L, = —5-08Bg + 26°Day;  Bey = 6byry + 201117 Doy = 2a, + 120,73 + Bagri .

From (20) we determine by taking (26), (27), (28) into account
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from which we obtain after substituting og,, 30g,/0r and taking (6) into account

2, 2
0, = — LIG -+ M’[& (29)
2 =TT ’
A[ze
where
-Ml_ = Aoy -+ 8Boy + 8% (Coo + Dao); My = — (dp1 -+ 8 (Cor + Dgy)) + 2K Agy = ~— agry” - 2ey;
N : = - o0yt =3
Cop = — agT1 " - 2¢4; Apy = 2ayry 3; Coy = 2a,71 9§ Doy = 24D — 24a4r7 7.

The angle 64 enclosing the contour L; of the plastic zone is determined from the condi-
tion p; = 0 for 6 = Bx:

0, =c¢ V ML, (30)

P, = N (03 — 62)/e?, (31)
where N = L;/Mz.

Let us determine the stress for the third approximation. We obtain the boundary condi-
tions for the third approximation on L, by equating terms of identical powers with €® from
(18) and (21) with (31) taken into account

O,y = (32)
N (02 — 0%) A7, (33)

—
Tppg =5 — g e

g3 or

We substitute the value of BTreo/Br into (33), take account of (6) and obtain
T = — T (020 — 0°)¢%, (34)
where

’ . . . P o = 'y, ) [
T = (8E; + 28°F )N, E,=2b -~ bayry Fy == 24asry® - 12b,r, - 4bohy .

Let us determine the boundary conditions on L,. The solution of the problem for the
third approximation depends on the parameter & which is the eccentricity of the tube. We
seek the solution in the form of a power series in §:

oo o0 o
2 . ) ;
Opg = 24 0r3:0',  Opy = 3} Opgid’, Tros = 2 Trasid' (35)
i=9 i=0 i=0

It follows from (1) that the radii r of the contours L,, L3 differ by Ar = § cos & +
(6*/2)sin®6 +... . After substituting (15) and (35) into (16) and expanding thestress ina
power series in Ar around the contour L} disposed concentrically relative to L,, we obtain

L6 e\
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We equate terms of identical powers in § in (36) and (37) and limiting ourselves to terms
with powers not higher than §* we obtain

Org0 == 0, Trpg = 0; (38)
Opg = 63’:" 0S50, Ty = TagoSin O (39)
- 050 sin® 0 N 86,0, sin?6 N 620,.30 ‘l‘“_z(l n _63'L3£ - (40)
a2 2 Y odr 2 oar 2 T T €08 0Ty sin g,
nwgz.wfzﬁlmnecme msmefgfggicwg‘

A sclution of (11) under the boundary conditions (32) and (34) on L; and (36) and (37) on L,
does not exist since the loads applied to the contour L; will not be equilibrated. Indeed,
projections of the forces acting on the outer contour L. equal zero, while the forces acting
on the inner contour L; equal

Ox
F,=0, Fp— ‘) (0,5 c0s § — T,p3 Sin 0) r,d0. (41)

“Bs

From the integrand of (41) there follows that Trgs sin § Is of the order of 6. Hence, to ob-
tain Fy = 0 such radial stresses are necessary as will, in their magnitude, be among approxi-
mations above the third. It therefore follows that radial stresses for the third approxima-
tion were excluded. ‘

For a continuous assignment of Trgs on the whole contour L, we expand the value of Tygs
(34) given in —08x<{ 6 <. 0% in a Fourier series:

Toos = ) by sin k8, (42)
k=1
where
4 9N
27 D 8 ) aink 60,
by = — e’ ((— ]ﬁ'—"hzﬁ_) Sin k0, — FE COSAG*)’ Bt g

It follows from {42) that only for k = 1 do the tangential stresses yield a force along the
x axis. Hence, to solve the problem formulated, radial stresses should be introduced that
equilibrate the tangential stresses for k = 1:

U%) = ])k cos 0, k = '11 (43)
which are of the order of 6 or & higher than T,gs. Let us note that the tangential stresses
will be self-equilibrated for k= 2.

The expressions (42) and (43) are the boundary conditions on L; for different k:

0';3) = bk COSB Tf]é)s = b;,_ sin 9, k= 1, (44)

o) =0, T e=lysinkd, k>2. (45)
Let us limit ourselves to terms not higher than 8%, Equating terms of identical powers in
§ into (44) and (45), we obtaln boundary conditions on L, that correspond to (38)- (40) the
boundary conditions on Li:
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ol =0, Wy =0, k=012 ... (46)

ofg*i:o T =0, k=0,1,2,..; (47)
( ' : .
0,3)2 = ¢, €08 0, Tle)go = ej sin e, k =1, oﬁ’;’, =0, rﬁ’éfm = ¢y, sin k@, (48)
E=2,3,...,
where
8rf 20 6\ 60
e == — — = 4 — 1sin Oy — —5- cos kO )
* ned (1 —rd)2(1—1r) (( IO i *

In conjunction with (46)-(48), expressions (38)-(40) areboundary conditions of the problem of
tube loading by internal pressure proportional to sin k8, cos k8. Here (38) and (46) are
the boundary conditions to determine the zeroth approximation stress in &; (39) and (47) are
to determine the first approximation stress in §; and (40), (48) to determine the second

approximation stress in §.
Therefore, finding the third approximation stress reduces to solving the problem of
loading a concentric tube by internal and external pressure proportional to sin k&, cos k&

Using the solution in [5]}, we obtain
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Having obtained the value ogs (50), we determine p; from (20) by equating terms with

Oga
_ 1 o, (52)
2 1»~___.

er ar

p_ =
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Fig. 2

and from (4) we obtain the position of the elastic—plastic boundary (see Fig. 1).

We obtain the stresses in an elastic domain from (7), (26), (27), (49)-(51) by limiting
ourselves to the third approximation

O = (4 4 &0y + 8%y, 0 = (1 - %0y + €045, Top = (1 + e¥r,o, + 57,05

The solution obtained satisfies the exact equations of the theory of ideal plasticity
in the plastic domain and the theory of elasticity in the elastic domain. Here because of
the limited number of approximations, the boundary conditions on the outer contour and the
conjugate conditions on the elastic— plastic boundary are satisfied approximately.

Therefore the accuracy of the solution obtained can be determlned with resepct to the
residual on the elastic—plastic boundary 1 — V(og — o )2 + 41 76(2K)7! and with respect to
the relative boundary conditions on the outer contour pV(ZK) s where

v = Vo1 =0, mq@h,)L%cw%% 0) 4+ 21,5 cOS (g, T) COS (7, B);
T = (Op — 0y) €OS (15, ) COS (ny, B) 4 T,q(CO8* (Ry, T) — cCOS* (1, B)).

The location of the boundaries Lg is represented in Fig. 2 for a tube with the parame-
ters r,/rz2 = 0.9; §/r, = 0.05 for ¢ = 0.13; 0.22; 0.29 (curves 1-3), respectively.
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